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Abstract. The present work proposes a scheme to solve non linear heat conduction prob-
lems based on a sequence of linear problems. An opaque three-dimensional plate with
a non-linear temperature-dependent source dominating the conductive operator is stud-
ied by employing a convergent sequence of linear problems whose simulation technique,
based on a finite element methodology, is known. Since the classical Galerkin method
presents instabilities when subjected to very high source-dominated regimen, a Gradient-
Galerkin/Least-Squares formulation is presented for a linear problem - an element of
the convergent sequence.
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1. INTRODUCTION

In most cases, an accurate mathematical modelling of real problems involving trans-
port phenomena gives rise to nonlinear systems of partial differential equations. Numer-
ical strategies to deal with these problems, such as finite element and finite difference
methods, after performing a convenient discretization lead to algebraic systems of equa-
tions. A great variety of numerical solution methods for linear systems is available but



if the system is a nonlinear one (unfortunately the majority of cases) there is neither
guarantee of existence nor uniqueness of solution. Some numerical schemes to solve
these problems (e.g. quasi-Newton methods) are available in the literature. A distinct
procedure is proposed in the present work: a new mathematical description for a large
class of nonlinear heat conduction problems which are treated as a convergent sequence
of continuous linear problems. A variational formulation is then introduced, since each
element of the sequence is a function that minimizes a convex quadratic and coercive
functional. A numerical discretization, such as finite elements, may be used to treat
each linear problem.

Finite element methods are usually based on Galerkin approximation, originally
introduced for structural problems which, assuming some restrictions usually present
in engineering practical applications (Franca et al., 1992 and references therein), gives
rise to symmetric elliptic operators and generates rather optimum convergence rates.
However, numerical pathologies in the Galerkin approximations such as the locking of
the velocity field and spurious oscillations in the pressure field may occur if Galerkin
method is applied to fluid problems. These undesirable pathologies may be present
even in such kinematical cases when a temperature-dependent heat source dominates
the classical diffusive operator.

The present work studies the heat transfer process in an opaque three-dimensional
plate (Saldanha da Gama, 1999) with a non-linear temperature-dependent source dom-
inating the conductive operator. The adopted mechanical model is obtained assuming
the existence of a heat transfer from/to the plate following Newton’s law of cooling.
Besides, an integration of this model on plate thickness direction produces a two dimen-
sional model in terms of a mean plate temperature. The resulting non-linear conduction
problem 1is treated as the limit of a convergent sequence of linear problems. A varia-
tional formulation is then proposed, since each linear problem of the above mentioned
sequence has an equivalent minimum principle. A finite element strategy is then em-
ployed to approximate each linear element of the above mentioned sequence. Since
numerical simulations have attested the instability inherent to Galerkin formulation in
the presence of very high source-dominated regimen (Frey et al., 1998), a stabilized for-
mulation based upon Gradient-Galerkin/Least-Squares, from now on referred as GGLS
methodology (Franca & Dutra do Carmo, 1989), which is able to generate stable ap-
proximations even for very high source-dominated regimen (Hughes, 1987), is presented
(Frey et al., 1999). The technique employed allows to perform complex simulations by
means of well stabilished tools, even for problems presenting spurious oscilations, arising
from dominant non linear temperature dependent heat sources.

2. MECHANICAL MODELLING

Let us consider a body represented by the bounded open set B defined by
B={(zx,y,2) € R® such that (z,y) e QCR? -L<z<L} (1)

in which  is a bounded open set of R? and L is a positive constant. The set B is called
a plate (see Fig.1) and, for for small values of L, the heat transfer process in the plate B
is conveniently described taking into account its geometrical features. In other words,
the energy transfer phenomenon in 5 may be described, in a certain sense, in the set €2
(Saldanha da Gama, 1997). In this work, we will treat the heat transfer process in a



thin plate originally represented by:

V- (kVT)+¢=0 in B
T =1, on I,
IQVT-II@Q =0 on Fh (2)

—kVT e, =h (T —=Ty) for z=+L
kT -e, =h_(T'—=T_) for z=—-L

in which 7" is the temperature field, I, is the region of the boundary 02 on which
essential (Dirichlet) conditions are imposed while I}, is subjected to the natural (Neu-
mann) ones, Nyq is the unit outward normal to 99, x(z,y) > 0 the thermal conduc-
tivity, hy (2, y) and h—(x,y) convection heat transfer coefficients, Ty (z,y) and T—_(x, y)
reference temperatures and the energy supply ¢ is supposed to be a non-linear and
non-increasing function of the temperature, given by ¢ = ¢(7T').
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o BT

+L
I.-

i |
& Yh(T-T)

Figure 1 - Energy transfer in a three-dimensional plane plate.

2.1 The plate approximation

Integrating the first equation of (2) over the thickness 2L and using the boundary
conditions stated in (2), we obtain

+L
AV (RVT) )z = [ (T = Ty)em

—[h (T =T )]sep, =0 in Q (3)
T'=T, onl,
/{VT-HQQZO Oth

At this point it is convenient to define a mean temperature evaluated over the

thickness of the plate, 0 = % fj_LL Tdz. Assuming that ¢ € L*(B),

228 = {al [ a0 < oo} ()

and that B has the cone property (Maz'ja, 1995), both T and 6 are continuous and
bounded functions. Thus the approximation § = T in B may be considered for a thin



plate (very small L) and problem (3) gives rise to,

V- (5V0) + 4~ [ (0~ T4)

+h_(0—T_)]=0 in Q (5)
0=0, onl},
IQVH-IIQQ:O Oth

in which the unknown 6 depends only on (z,y). Considering the energy supply ¢,
problem (5) may be expressed as

—V - (kVO) +r+pd =X in Q
0 =0, onl, (6)
IQVH-IIQQ:O Oth

where \(z,y) and pu(x,y) are known functions defined by

1 1
A= —(hT h_T_) ; =—(h h_ 7

3. SOLUTION CONSTRUCTION

A technique enabling to represent the non-linear conduction problem presented in
Eqgs.(6)-(7) as the limit of a convergent sequence of linear problems is now proposed.
Each element of the sequence, which may be obtained from the minimization of a
convex quadratic and coercive functional, represents a three-dimensional plate with
temperature dependent heat source.

3.1 On the convergence of process

Assuming the thermal condutivity s as a constant, the problem represented by
equations (6)-(7) may be rewritten as:

A0+ f(0)=0 in Q
0=0,>0 onl, (8)
VH‘H@QZO Oth

where f(6) is a nonlinear, nonnegative and decreasing function of # given by

r+pd — A
K

f(0) = (9)

Proposition. A proposed solution 6 of the above stated problem is given by the
limit of the sequence [0, 0, ...,0;,...] with §; = 0, whose elements are given by



AHZ-H -+ f(HZ) — ()4(92'+1 — 92) =0 n Q
Hi—i—l = 99 on Fg (10)
Vei—l—l Ny = 0 on Fh

where « is a sufficiently large constant.

Proof. Problem (10) may be rewiritten as

A0y — 0;) — [o(0iy1 — 05) — (O — O5—1)] + f(0:) — f(fiz1) =0 in O
Hi—i—l - 02 =0 on Fg (11)
V(041 —0;) - mog =0 on I}

Since 01 = 0, f(#) is nonnegative and 03 > 0, it may be concluded that 65 > 6,
everywhere. Besides, once that in the region where ;11 — 0; reaches its minimum one
must have

a(fiy1 —0;) > [a(0; — 0;1) + f(0;) — f(0i—1)] (12)

and since a must be sufficiently large, it comes that 6,41 — 0; > 0 everywhere, leading
to the conclusion that

0 <05<05... (13)
which is equivalent to say that the sequence [01,02,...,0;,...] is a non-decreasing one.
In order to show that the non-decreasing sequence [0, 02, ..., theta;,...] converges

one must show that it has an upper bound. If # is the unique solution of the problem,
it may be stated as

A0 = Oi1) + (0ip1 — 0;) + f(0) — f(0) =0 in Q
0_0i+1 =0 on Fg (14)
V(0 —0;41) ngo =0 onl}

in order that (# — 6;,1) reaches the minimum it is necessary that

a(Oip1 — 0:) < f(0:) — f(0) (15)

Finally, since it has been assumed that the function f is a decreasing function of
and 0;11 > 0; one may conclude that

0> 0, (16)

ensuring the convergence of the sequence to the solution of the problem.

Obtaining each 0;. Assuming that the the solution 6 of the sequence
[01,05,...,0;,...] is given by



i—00

a variational formulation may be constructed by making each 6; the field which mini-
mizes the functional ;4 1[¢] defined as below,

Lipi[g] = /Q {§<|V¢|2>—Xi¢+ %W}d@ (18)

in which ¢ is any admissible field ¢ € W,

W= {¢e€L*Q)],¢L*Q), fori=1,2,0=0,on I,} (19)

and )\; and 77, are given by

Z:—)\—FF(HZ)—(XHZ

20
R =p+a 20)
The functional I;41[¢] is quadratic, convex and coercive (Berger, 1977; Saldanha
da Gama, 1997), since k and Tr; are positive valued functions. In other words, this
functional admits only one minimum which is reached when ¢ = 0, being 0, the solution
of Eq.(10), the Euler-Lagrange equation of functional (18).

After performing the minimization of each functional I;1[¢], the coefficients \; and
It; must be recalculated. This operation is repeated until convergence is achieved.

4. AN APPLICATION TO A LINEAR PROBLEM

4.1 Finite element discretization of a linear problem

In this section a finite element method is employed to approximate each element of
the convergent sequence of linear problems which represents the energy transfer in thin
plates subjected to nonlinear temperature-dependent heat sources (Eqgs.(6)-(7)). The
problems considered herein are defined on a bounded domain 2 C R?, with a boundary

I

)

I,NI,=0,T,+#0

with I, and I}, defined as in Eq.(2). A partition C; of domain © into elements K
consisting of convex quadrilaterals is performed in the usual way (Ciarlet, 1978),

o= | 0«
Kecy, (22)
QKIQQKQ :@, VKi,Ks €Cp

and the finite element subspaces for temperature field W’ are defined by,

Wh={pec H ()| ¢x € Pe(K), VK €Ch,¢p=0o0n I,} (23)



Wl ={pc H'(Q)| ¢x € Pe(K), VK €Cp, ¢=10g 0n I} (24)
)

where Pj(K) denotes the space of polynomials of degree k greater than zero and H* ()
is the Sobolev space of functions with square-integrable value and 12! —derivatives in 2

- see Adams (1975),

HY Q) = {v c L*(Q)| g—; c L*(Q), fori= 1,2} (25)

Based upon the approximated subsets described by FEqs.(23)-(24) and supposing that
the finite element approximation 9?+1 admits the representation (Hughes, 1987)

0741 (x) = 9" (x) + 05 (), (26)

where " € W and 95 = 0, on I}, we can construct a Gradient-Galerkin/Least-
Squares (GGLS) formulation - introduced by Franca & Dutra do Carmo (1989), which
adds to Galerkin formulation a least-squares form of the gradient of the Euler-Lagrage
equations in order to enhance stability on the H'-seminorm - to each linear problem in
the convergent sequence representing Eqs.(6)-(7) as: Given m:Q — R and 04: Tg — R,
Find 02, € W}, 08 | = o" + 0" with o" € W", such that

/ kV " - VedQ + / " dQ
Q Q

+ / (" = V- (5V") T(mi¢" — V- (kV¢"))d2

+ K; /QK X (T — V- (kV¢"))d0 (27)
# 3 [ TR (O (5o
- X [ 0=V (V) 9 69l
S [ @) - VT (T AT - VT (T
I o

where the stability parameter 7 and v are defined from error analysis (Valentin & Franca,
1995) considerations as follows:

{(wi (x)) (28)



V(% wi (x)) = 45 §(wi(x)) (29)
i) = TR (30)

(wr(x)) = {cldK(x) : ZE(Z)KS? <1 (31)
Ce Y hicllAdl§ i < IIVolls oW, (33)

Remarks

1. Glancing through the GGLS formulation defined by FEqs.(27), we may note that
whether the stability parameters 7 and v are taken to be zero, Galerkin formulation

would be recovered for Eqgs.(6)-(7).

2. In Frey et al. (1999) the stability parameters are presented, based on the er-
ror analysis obtained for the GGLS method for an advective-diffusive model with
temperature-dependent source by Valentin & Franca (1995), derived for the particu-
lar case of of absence of advective velocity field. Since each element of the convergent
sequence that represents the conduction in a plate with a nonlinear source studied
in the present work is a linear problem, like the one considered by Frey et al. (1999),
the same stability parameters evaluation holds for the present case.

4.2 Results for each linear problem

In this section we present some two-dimensional simulations of the heat transfer
process in a rectangular plate subjected to a thermal dominant heat source. The ge-
ometry and boundary conditions of the problem are sketched in Fig.2a: the domain is
a biunity plane plate subjected to both Dirichlet and Neumann boundary conditions,

(34)

p_ofr="05 ,—05<y<+05
" ly=-05 ,—05<x<+405.

(a) 0 =1 or (b) VO -npg =0

r=+405 ,—05<y<+0.5 (35)
y=+405 ,—05<az<+0.5.

the diffusivity is & = 107%, while the thermal source A and the coefficient p of the
zero-derivative term of eq.(7) were taken equal to one. The computational domain 2
was discretized by a uniform mesh consisting of 900 bilinear elements with 961 degrees-
of-freedom.
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As it can be seen from Fig.3 and from all situations considered in Frey et al. (1999),

the GGLS formulation was able to deal precisely with very high zero-order-dominated

Figure 3 - GGLS formulation
situations and its results are similar to the homogeneous Dirichlet problem computed

in Franca and Dutra do Carmo (1989).



5. FINAL REMARKS

In this article a scheme to solve a conduction heat transfer process in an opaque
three-dimensional plate with non-linear temperature-dependent heat source was pro-
posed. The non-linear resulting problem was regarded as the limit of a sequence whose
convergence has been proven and whose elements were obtained from the minimization
of a convex quadatic functional. In short, a nonlinear problem has been treated as a
convergent sequence of linear problems. Such a technique allows to carry out complex
simulations by means of well stabilished numerical tools, such as GGLS finite element
approximations, even for problems with dominant non linear temperature-dependent
heat source - which may lead to spurious oscilations in a classical Galerkin approach.
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